84 research outputs found

    Characterisation of the bacterial and fungal communities associated with different lesion sizes of Dark Spot Syndrome occurring in the Coral Stephanocoenia intersepta

    Get PDF
    The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS) afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi) associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H), those in advance of the lesion interface (apparently healthy AH), and three sizes of disease lesions (small, medium, and large) varied significantly (ANOSIM R = 0.052 p,0.001), apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237), Acinetobacter (KC190251), Parvularculaceae (KC19027), and Oscillatoria (KC190271). Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals’ symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name), the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in Black Band Disease, another widespread coral disease

    YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids

    Get PDF
    Sulfoquinovose is produced by photosynthetic organisms at a rate of 1010 tons per annum and is degraded by bacteria as a source of carbon and sulfur. We have identified Escherichia coli YihQ as the first dedicated sulfoquinovosidase and the gateway enzyme to sulfoglycolytic pathways. Structural and mutagenesis studies unveiled the sequence signatures for binding the distinguishing sulfonate residue and revealed that sulfoquinovoside degradation is widespread across the tree of life

    Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM)17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis.</p> <p>Methods</p> <p>We studied the effects of cigarette smoke extract (CSE) and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs) from COPD patients, healthy smokers and non-smokers.</p> <p>Results</p> <p>We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP)-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding) was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups.</p> <p>Conclusions</p> <p>Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.</p

    Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry

    Get PDF
    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators

    Delirium risk screening and haloperidol prophylaxis program in hip fracture patients is a helpful tool in identifying high-risk patients, but does not reduce the incidence of delirium

    Get PDF
    Background: Delirium in patients with hip fractures lead to higher morbidity and mortality. Prevention in high-risk patients by prescribing low dose haloperidol is currently under investigation. Methods. This prospective cohort surveillance assessed hip fracture patients for risk of developing a delirium with the Risk Model for Delirium (RD) score. High-risk patients (score ≥5 points) were treated with a prophylactic low-dose of haloperidol according to hospital protocol. Primary outcome was delirium incidence. Secondary outcomes were differences between high- and low-risk patients in delirium, length of stay (LOS), return to pre-fracture living situation and mortality. Logistic regression analysis was performed with age, ASA-classification, known dementia, having a partner, type of fracture, institutional residence and psychotropic drug use as possible confounders. Results: 445 hip fracture patients aged 65 years and older were admitted from January 2008 to December 2009. The RD-score was completed in 378 patients, 173 (45.8%) high-risk patients were treated with prophylactic medication. Sensitivity was 71.6%, specificity 63.8% and the negative predictive value (NPV) of a score < 5 was 85.9%. Delirium incidence (27.0%) was not significantly different compared to 2007 (27.8%) 2006 (23.9%) and 2005 (29.0%) prior to implementation of the RD- protocol. Logistic regression analysis showed that high-risk patients did have a significant higher delirium incidence (42.2% vs. 14.1%, OR 4.1, CI 2.43-7.02). They were more likely to be residing at an alternative living situation after 3 months (62.3% vs. 17.0%, OR 6.57, CI 3.23-13.37) and less likely to be discharged from hospital before 10 days (34.9% vs. 55.9%, OR 1.63, CI 1.03-2.59). Significant independent risk factors for a delirium were a RD-score 5 (OR 4.13, CI 2.43-7.02), male gender (OR 1.93, CI 0.99-1.07) and age (OR 1.03, CI 0.99-1.07). Conclusions: Introducing the delirium prevention protocol did not reduce delirium incidence. The RD-score did identify patients with a high risk to develop a delirium. This high-risk group had a longer LOS and returned to pre-fracture living situation less often. The NPV of a score < 5 was high, as it should be for a screening instrument. Concluding, the RD-score is a useful tool to identify patients with poorer outcome

    Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    Get PDF
    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks

    Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect

    Get PDF
    The Warburg effect - a classical hallmark of cancer metabolism - is a counter-intuitive phenomenon in which rapidly proliferating cancer cells resort to inefficient ATP production via glycolysis leading to lactate secretion, instead of relying primarily on more efficient energy production through mitochondrial oxidative phosphorylation, as most normal cells do. The causes for the Warburg effect have remained a subject of considerable controversy since its discovery over 80 years ago, with several competing hypotheses. Here, utilizing a genome-scale human metabolic network model accounting for stoichiometric and enzyme solvent capacity considerations, we show that the Warburg effect is a direct consequence of the metabolic adaptation of cancer cells to increase biomass production rate. The analysis is shown to accurately capture a three phase metabolic behavior that is observed experimentally during oncogenic progression, as well as a prominent characteristic of cancer cells involving their preference for glutamine uptake over other amino acids

    Animal Interactions and the Emergence of Territoriality

    Get PDF
    Inferring the role of interactions in territorial animals relies upon accurate recordings of the behaviour of neighbouring individuals. Such accurate recordings are rarely available from field studies. As a result, quantification of the interaction mechanisms has often relied upon theoretical approaches, which hitherto have been limited to comparisons of macroscopic population-level predictions from un-tested interaction models. Here we present a quantitative framework that possesses a microscopic testable hypothesis on the mechanism of conspecific avoidance mediated by olfactory signals in the form of scent marks. We find that the key parameters controlling territoriality are two: the average territory size, i.e. the inverse of the population density, and the time span during which animal scent marks remain active. Since permanent monitoring of a territorial border is not possible, scent marks need to function in the temporary absence of the resident. As chemical signals carried by the scent only last a finite amount of time, each animal needs to revisit territorial boundaries frequently and refresh its own scent marks in order to deter possible intruders. The size of the territory an animal can maintain is thus proportional to the time necessary for an animal to move between its own territorial boundaries. By using an agent-based model to take into account the possible spatio-temporal movement trajectories of individual animals, we show that the emerging territories are the result of a form of collective animal movement where, different to shoaling, flocking or herding, interactions are highly heterogeneous in space and time. The applicability of our hypothesis has been tested with a prototypical territorial animal, the red fox (Vulpes vulpes)
    corecore